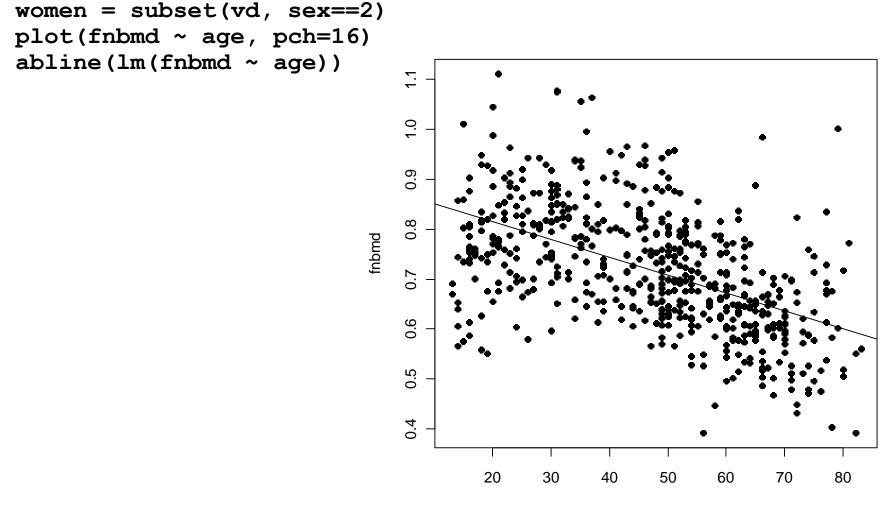
Multiple linear regression analysis: introduction

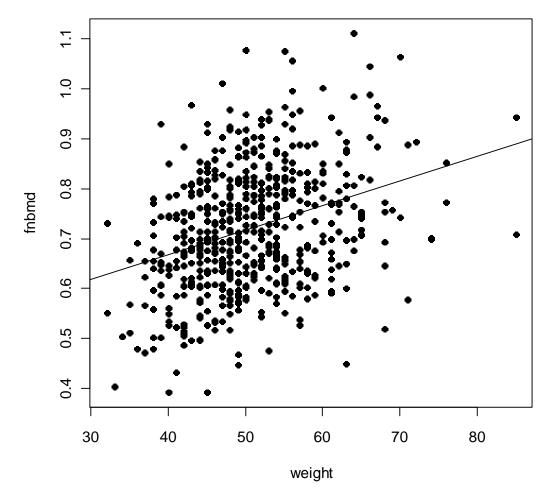
Tuan V. Nguyen Professor and NHMRC Senior Research Fellow Garvan Institute of Medical Research University of New South Wales Sydney, Australia

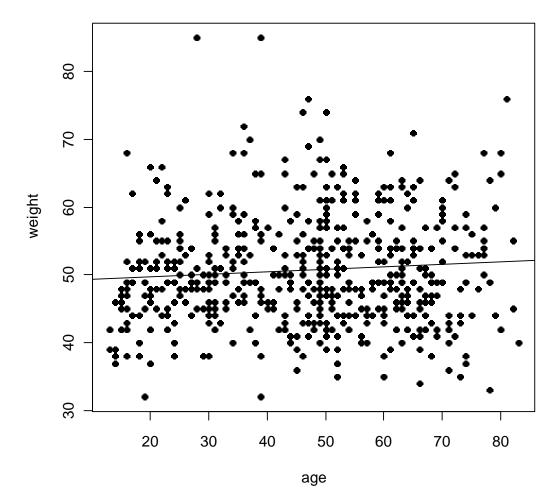

What we are going to learn ...

- Examples
- Purposes of MLR
- Questions of interest
- R analysis and Interpretation
- Categorical predictor
- Selection of an "optimal" model

Consider the relationships between

- Femoral neck BMD
- Weight
- and Age


Femoral neck bone density and age


age

Weight and femoral neck bone density

plot(fnbmd ~ weight, pch=16)
abline(lm(fnbmd ~ weight))

Relationship between age and weight

Questions of interest

- What are the effects of age and weight on FNBMD?
- Is the effect of age on BMD independent of weight?
- How well age and weight can predict BMD?

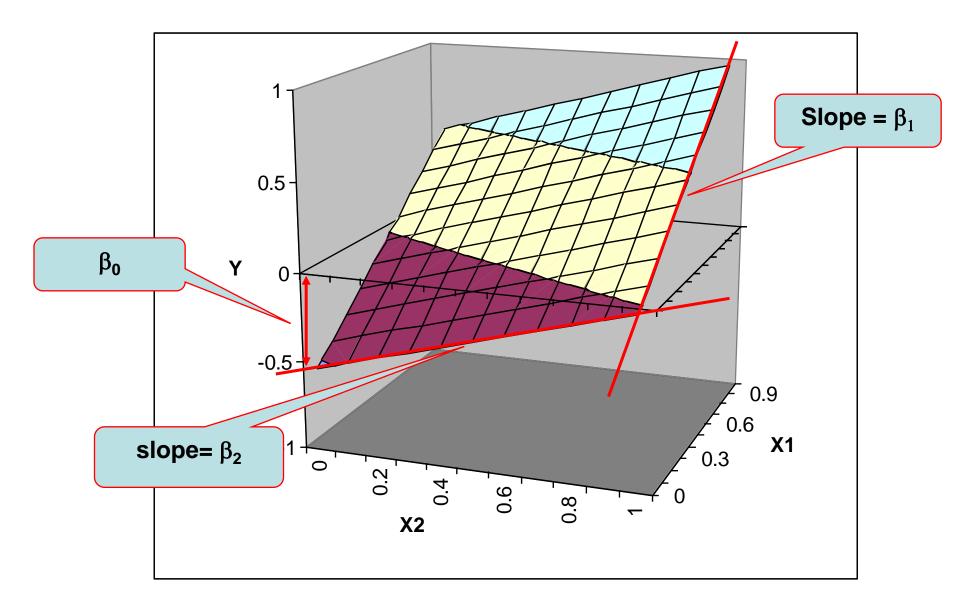
Simple and multiple linear regression model

• Simple linear regression model

BMD = a + b*weight + e BMD = a + b*age + e

• Multiple linear regression model

BMD = a + b*weight + c*age + e


The multiple linear regression model

The model assumes

- The responses are *normally distributed* with means μ (each response has a *different* mean) and *constant* variance σ^2
- The mean response μ of a typical observation depends on the covariates through a *linear* relationship

 $\boldsymbol{\mu} = \boldsymbol{\beta}_0 + \boldsymbol{\beta}_1 \; \boldsymbol{X}_1 + \ldots + \boldsymbol{\beta}_k \; \boldsymbol{X}_k$

• The responses are *independent*

Estimation of the coefficients

- We estimate the (unknown) regression plane by the "least squares plane" (best fitting plane)
- Best fitting plane = plane that minimizes the sum of squared vertical deviations from the plane
- That is, minimize the least squares criterion

$$\sum_{i=1}^{n} (y_i - b_0 - b_1 x_{i1} - \dots - b_k x_{ik})^2$$

Estimation of the coefficients (2)

- The R command <u>lm</u> calculates the coefficients of the best fitting plane
- This function solves the *normal equations*, a set of linear equations derived by differentiating the least squares criterion with respect to the coefficients

R analysis

m1 = lm(fnbmd ~ weight)
m2 = lm(fnbmd ~ age)
m3 = lm(fnbmd ~ age + weight)
summary(m1); summary(m2); summary(m3)

Coefficient	S:
	Estimate Std. Error t value Pr(> t)
(Intercept)	0.4699822 0.0310144 15.15 < 2e-16 ***
weight	0.0049416 0.0006041 8.18 1.95e-15 ***
Multiple R-	squared: 0.1074, Adjusted R-squared: 0.1058
Coefficient	.s:
	Estimate Std. Error t value Pr(> t)
(Intercept)	0.8871142 0.0123679 71.73 <2e-16 ***
age	-0.0035730 0.0002478 -14.42 <2e-16 ***
Multiple R-	squared: 0.2721, Adjusted R-squared: 0.2708

Coefficient	s:				
	Estimate	Std. Error	t value	Pr(> t)	
(Intercept)	0.6130722	0.0266642	22.99	<2e-16	***
age	-0.0037703	0.0002243	-16.81	<2e-16	***
weight	0.0055870	0.0004937	11.32	<2e-16	***
Multiple R-squared: 0.4085, Adjusted R-squared: 0.4064					

Let's summarize

Model	Regression (standa	Coefficient of determination (R ²)	
	Weight		
1	0.0049 (0.0006)		0.107
2		-0.0036 (0.00025)	0.272
3	0.0056 (0.0005)	-0.0038 (0.0002)	0.408

Our model:

BMD = 0.6131 - 0.0038*age + 0.0056*weight

Interpretation

Model	Regression (standar	Coefficient of determination (R ²)		
	Weight	Weight Age		
1	0.0049 (0.0006)		0.107	
2	-0.0036 (0.00025)		0.272	
3	0.0056 (0.0005)	-0.0038 (0.0002)	0.408	

Interpretation: BMD was positively associated with body weight and inversely related to age. Each kg increase in weight was associated with an 0.006 g/cm² increase in BMD. Furthermore, each year advancing age was associated with a decline of 0.0038 g/cm² in BMD, and the effect was independent of weight. Collectively, age and body weight accounted for approximately 41% of variation in BMD

Let's re-scale the data

$\mathcal{I} = \frac{\text{Individual value} - \text{mean}}{\text{standard deviation}}$

- Mean of z is always 0
- When z = 0, the individua' s value is *equal* to the sample mean
- When z > 0, the individual's value *higher* than the sample mean
- When z < 0, the individual's value *lower* than the sample mean

Re-scale of predictor variables

- Re-scale of predictor variable helps
 - Meaningful interpretation of regression parameter
 - Technical computation (more stable results)

R analysis

```
zage = (age-mean(age)) / sd(age)
zweight = (weight-mean(weight)) / sd(weight)
summary(lm(fnbmd ~ zage+zweight)
```

```
Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.720509 0.003974 181.29 <2e-16 ***

zage -0.067071 0.003990 -16.81 <2e-16 ***

zweight 0.045150 0.003990 11.32 <2e-16 ***

----

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.09388 on 555 degrees of freedom

Multiple R-squared: 0.4085, Adjusted R-squared: 0.4064

F-statistic: 191.7 on 2 and 555 DF, p-value: < 2.2e-16
```

Presentation

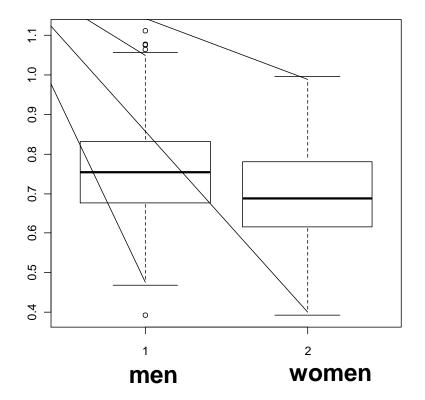
Predictor	Unit of comparison	Regression coefficient and standard error
Age	17.8	-0.067 (0.004)
Weight	8.1	0.045 (0.004)

Which variable is more important?

Model	Variance of FNBMD	Change in variance
No predictor	0.0148	•
Age	0.0108	-0.004 (down 27%)
Weight	0.0133	-0.001 (down 11%)
Age + Weight	0.0088	-0.006 (down 41%)

Checking model assumptions

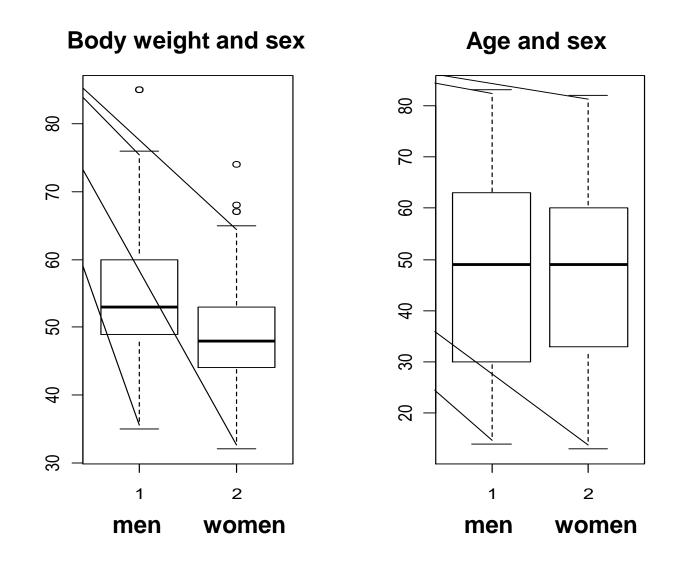
par(mfrow=c(2,2))
plot(m3)



Categorical predictor

Let's look at the data again

```
setwd("C:/Documents and Settings/Tuan/My Documents/_Current
    Projects/_Vietnam/Huong/Vitamin D")
vd = read.csv("vitaminD.csv", header=T, na.strings=" ")
attach(vd)
names(vd)
```


boxplot(fnbmd ~ sex)

But ...

- > temp=cbind(fnbmd,weight,age)
- > describe.by(temp, sex, skew=F)

INDICES: 1 (men) n mean sd median trimmed mad min max range se var **1 222 0.76 0.12 0.76 0.75 0.12 0.39 1.11 0.72 0.01** fnbmd weight 2 222 54.46 8.44 53.00 54.06 7.41 35.00 85.00 50.00 0.57 age 3 222 46.67 19.30 49.00 46.57 25.20 14.00 83.00 69.00 1.30 INDICES: 2 (women) n mean sd median trimmed mad min max range var se **1 336 0.70 0.11 0.69 0.70 0.12 0.39 1 0.6 0.01** fnbmd weight 2 336 48.21 6.78 48.00 47.94 7.41 32.00 74 42.0 0.37 age 3 336 46.60 16.74 49.00 47.04 19.27 13.00 82 69.0 0.91

Question of interest

- Is BMD in men higher than women, *after adjusting* for age and weight ?
- Solution: multiple linear regression
- Model:

BMD = a + b*age + c*weight + d*sex

R analysis

m4 = lm(fnbmd ~ zage + zweight + sex)
summary(m4)

Coefficients:							
	Estimate	Std. Error	t value	Pr(> t)			
(Intercept)	0.769472	0.014466	53.191	< 2e-16	* * *		
zage	-0.066653	0.003951	-16.868	< 2e-16	* * *		
zweight	0.039447	0.004270	9.239	< 2e-16	* * *		
sex	-0.030561	0.008689	-3.517	0.000472	***		
Residual sta	andard errc	r: 0.09293	on 554 d	degrees of	f freedom		
Multiple R-squared: 0.4215, Adjusted R-squared: 0.4183							
F-statistic	: 134.5 on	3 and 554 I	DF, p-va	alue: < 2.	.2e-16		
			_				

New model

Coefficient	Coefficients:						
	Estimate	Std. Error	t value	Pr(> t)			
(Intercept)	0.769472	0.014466	53.191	< 2e-16	* * *		
zage	-0.066653	0.003951	-16.868	< 2e-16	* * *		
zweight	0.039447	0.004270	9.239	< 2e-16	* * *		
sex	-0.030561	0.008689	-3.517	0.000472	***		

BMD = 0.769 - 0.067*zage + 0.039*zweight - 0.03*sex

Remember sex = 1 (men), 2 (women)

For men:

BMD = 0.769 - 0.067*zage + 0.039*zweight - 0.03*1

= 0.739 - 0.067*zage + 0.039*zweight

For women:

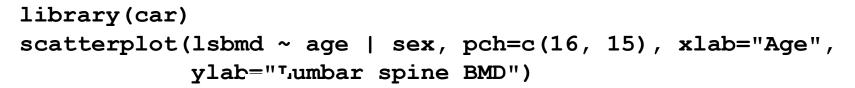
BMD = 0.769 - 0.067*zage + 0.039*zweight - 0.03*2

= 0.709 - 0.067*zage + 0.039*zweight

Interpretation

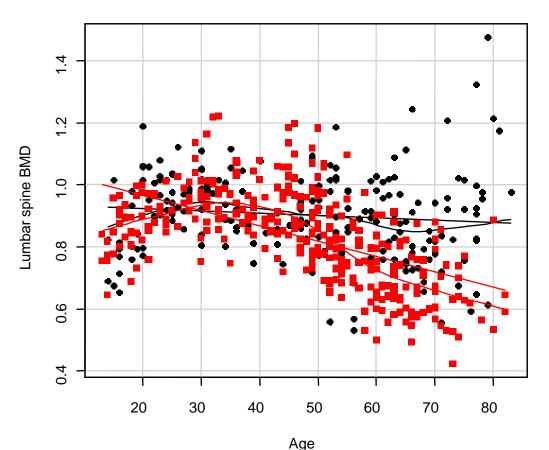
- After adjusting for age and weight, BMD in women was on average 0.03 g/cm² (P = 0.0005) lower than that in men
- Note: before adjusting for age and weight, BMD in men was higher than women by 0.06 g/cm² (0.76 vs 0.70)

More analyses: alcohol, tea, coffee ...


m5 = lm(fnbmd ~ zage + zweight + sex + alcohol + tea + coffee) summary(m5)

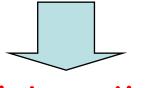
Coefficients:						
	Estimate	Std. Error	t value	Pr(> t)		
(Intercept)	0.724237	0.026137	27.709	<2e-16 ***		
zage	-0.067141	0.004061	-16.533	<2e-16 ***		
zweight	0.039610	0.004298	9.217	<2e-16 ***		
sex	-0.031427	0.011044	-2.846	0.0046 **		
alcohol	-0.005053	0.011784	-0.429	0.6682		
tea	0.003062	0.009635	0.318	0.7507		
coffee	0.027430	0.012176	2.253	0.0247 *		
Residual st	Residual standard error: 0.09278 on 545 degrees of freedom					
(6 observations deleted due to missingness)						
Multiple R-squared: 0.4184, Adjusted R-squared: 0.412						
F-statistic	: 65.35 on	6 and 545 I	DF, p-va	alue: < 2.2e-16		

Non-coffee drinkers had higher BMD than coffee drinkers!


Interaction analysis

Lumbar spine BMD, age, and sex

men



Observation

It seems ...

- The rate of decline (with age) in lumbar spine is higher in women than in men
- The BMD-age relationship is different between men and women

Interaction

R analysis

m6 = lm(lsbmd ~ weight + age + coffee + sex + sex:age)
summary(m6)

Coefficients:						
	Estimate	Std. Error	t value	Pr(> t)		
(Intercept)	0.3633464	0.0711284	5.108	4.51e-07	* * *	
weight	0.0061790	0.0007018	8.804	< 2e-16	* * *	
age	0.0036166	0.0009506	3.805	0.000158	* * *	
coffee	0.0381405	0.0157832	2.417	0.015999	*	
sex	0.1762090	0.0299826	5.877	7.30e-09	* * *	
age:sex	-0.0045147	0.0005966	-7.567	1.65e-13	***	
Residual sta	andard error	: 0.1223 on	542 deg	grees of f	Ereedom	
(10 observations deleted due to missingness)						
Multiple R-squared: 0.3337, Adjusted R-squared: 0.3276						
_	_	and 542 DF,	-	—		

Model for LSBMD

	Estimate	Std. Error	t value	Pr(> t)	
(Intercept)	0.3633464	0.0711284	5.108	4.51e-07	* * *
weight	0.0061790	0.0007018	8.804	< 2e-16	* * *
age	0.0036166	0.0009506	3.805	0.000158	* * *
coffee	0.0381405	0.0157832	2.417	0.015999	*
sex	0.1762090	0.0299826	5.877	7.30e-09	* * *
age:sex	-0.0045147	0.0005966	-7.567	1.65e-13	***

LSBMD = 0.363 + 0.006*weight + 0.0036*age + 0.038*coffee + 0.176*sex - 0.0045*sex*age

For men:

BMD = 0.363 + 0.006*weight + 0.0036*age + 0.038*coffee + 0.176*1 - 0.0045*1*age

= 0.539 + 0.006*weight - 0.0009*age + 0.038*coffee

For women:

 $BMD = 0.363 + 0.006^*$ weight + 0.0036* age + 0.038* coffee + 0.176* 2 - 0.0045* 2* age

= 0.715 + 0.006*weight - 0.0054*age + 0.038*coffee

Summary

- Multiple linear regression is a very useful model for analyzing complex data
- Assumptions: normal distribution, variance is stable across predictor values, independence
- Always check for interaction effects